LibreOffice 24.8 Help

The Add-in functions are supplied by the UNO com.sun.star.sheet.addin.Analysis service.

Returns the cosine of a complex number.

Returns the hyperbolic cosine of a complex number.

Returns the cotangent of a complex number.

Returns the cosecant of a complex number.

Returns the hyperbolic cosecant of a complex number.

Returns the secant of a complex number.

Returns the hyperbolic secant of a complex number.

Returns the sine of a complex number.

Returns the hyperbolic sine of a complex number.

Returns the tangent of a complex number.

Converts a value from one unit of measurement to the corresponding value in another unit of measurement.

The result is a complex number which is returned from a real coefficient and an imaginary coefficient.

COMPLEX(RealNum; INum [; Suffix])

Real num: the real coefficient of the complex number.

I num: the imaginary coefficient of the complex number.

Suffix: list of options, "i" or "j".

=COMPLEX(3;4;j) returns 3+4j.

The result is the factorial of the number with increments of 2.

FACTDOUBLE(Number)

Number: if the number is even, the following factorial is calculated: n*(N-2)*(n-4)*...*4*2.

For even numbers FACTDOUBLE(n) returns:

2*4*6*8* ... *n

For odd numbers FACTDOUBLE(n) returns:

1*3*5*7* ... *n

FACTDOUBLE(0) returns 1 by definition.

=FACTDOUBLE(6) returns 48.

=FACTDOUBLE(6) returns 48.

=FACTDOUBLE(6) returns 48.

The result is the absolute value of a complex number.

IMABS(Complex number)

Complex number: the complex number is entered in the form "x + yi" or "x + yj"

=IMABS("5+12j") returns 13.

The result is the imaginary coefficient of a complex number.

IMAGINARY(Complex number)

=IMAGINARY("4+3j") returns 3.

The result is the argument (the phi angle) of a complex number.

IMARGUMENT(Complex number)

=IMARGUMENT("3+4j") returns 0.927295.

The result is the conjugated complex complement to a complex number.

IMCONJUGATE(Complex number)

=IMCONJUGATE("1+j") returns 1-j.

The result is the division of two complex numbers.

IMDIV(Numerator;Denominator)

Numerator, Denominator: the complex numbers are entered in the form "x + yi" or "x + yj"

=IMDIV("-238+240i";"10+24i") returns 5+12i.

The result is the power of e and the complex number. The constant e has a value of approximately 2.71828182845904.

IMEXP(Complex number)

=IMEXP("1+j") returns 1.47+2.29j (rounded).

The result is the natural logarithm (to the base e) of a complex number. The constant e has a value of approximately 2.71828182845904.

IMLN(Complex number)

=IMLN("1+j") returns 0.35+0.79j (rounded).

The result is the common logarithm (to the base 10) of a complex number.

IMLOG10(Complex number)

=IMLOG10("1+j") returns 0.15+0.34j (rounded).

The result is the binary logarithm of a complex number.

IMLOG2(Complex number)

=IMLOG2("1+j") returns 0.50+1.13j (rounded).

The result is the ComplexNumber raised to the power of Number.

IMPOWER(Complex number;Number)

Number: the exponent.

=IMPOWER("2+3i";2) returns -5+12i.

The result is the product of a set of complex numbers.

IMPRODUCT(Complex 1 [; Complex 2 [; … [; Complex 255]]])

=IMPRODUCT("3+4j";"5-3j") returns 27+11j.

The result is the real coefficient of a complex number.

IMREAL(Complex number)

=IMREAL("1+3j") returns 1.

The result is the square root of a complex number.

IMSQRT(Complex number)

=IMSQRT("3+4i") returns 2+1i.

The result is the subtraction of two complex numbers.

IMSUB(Complex number 1;Complex number 2)

=IMSUB("13+4j";"5+3j") returns 8+j.

The result is the sum of a set of complex numbers.

IMSUM(Complex 1 [; Complex 2 [; … [; Complex 255]]])

=IMSUM("13+4j";"5+3j") returns 18+7j.

The result is the string representing the number in binary (base-2) form for the octal number string entered.

OCT2BIN(Number [; Places])

Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.

Places: the number of places to be output.

=OCT2BIN("3";3) returns "011".

The result is the number for the octal number string entered.

OCT2DEC(Number)

Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.

=OCT2DEC("144") returns 100.

The result is the string representing the number in hexadecimal form for the octal number string entered.

OCT2HEX(Number [; Places])

Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.

Places: the number of places to be output.

=OCT2HEX("144";4) returns "0064".