Regression Analysis

Performs linear, logarithmic, or power regression analysis of a data set comprising one dependent variable and multiple independent variables.

For example, a crop yield (dependent variable) may be related to rainfall, temperature conditions, sunshine, humidity, soil quality and more, all of them independent variables.

แƒ‘แƒ แƒซแƒแƒœแƒ”แƒ‘แƒแƒ–แƒ” แƒฌแƒ•แƒ“แƒแƒ›แƒ˜แƒกแƒแƒ—แƒ•แƒ˜แƒก...

From the menu bar:

Choose Data - Statistics - Regression

From the tabbed interface:

Choose Data - Statistics - Regression.

On the Data menu of the Data tab, choose Statistics - Regression.


note

For more information on regression analysis, refer to the corresponding Wikipedia article.


แƒ›แƒแƒœแƒแƒชแƒ”แƒ›แƒ”แƒ‘แƒ˜

แƒ“แƒแƒ›แƒแƒฃแƒ™แƒ˜แƒ“แƒ”แƒ‘แƒ”แƒšแƒ˜ แƒชแƒ•แƒšแƒแƒ“(แƒ”แƒ‘)-แƒ˜แƒก (X) แƒจแƒฃแƒแƒšแƒ”แƒ“แƒ˜:

Enter a single range that contains multiple independent variable observations (along columns or rows). All X variable observations need to be entered adjacent to each other in the same table.

แƒ“แƒแƒ›แƒแƒ™แƒ˜แƒ“แƒ”แƒ‘แƒฃแƒšแƒ˜ แƒชแƒ•แƒšแƒแƒ“(แƒ”แƒ‘)-แƒ˜แƒก (Y) แƒจแƒฃแƒแƒšแƒ”แƒ“แƒ˜:

Enter the range that contains the dependent variable whose regression is to be calculated.

แƒแƒ แƒ˜แƒ•แƒ”, X แƒ“แƒ Y แƒจแƒฃแƒแƒšแƒ”แƒ“แƒ”แƒ‘แƒก, แƒญแƒ“แƒ”แƒ”แƒ‘แƒ˜ แƒ”แƒฅแƒœแƒ”แƒ‘แƒ

Check to use the first line (or column) of the data sets as variable names in the output range.

แƒจแƒ”แƒ“แƒ”แƒ’แƒ”แƒ‘แƒ˜:

แƒ›แƒ˜แƒ›แƒแƒ แƒ—แƒ•แƒ แƒ–แƒ”แƒ“แƒ แƒ›แƒแƒ แƒชแƒฎแƒ”แƒœแƒ แƒฃแƒฏแƒ แƒ”แƒ“แƒ–แƒ” แƒจแƒฃแƒแƒšแƒ”แƒ“แƒ˜แƒกแƒ—แƒ•แƒ˜แƒก, แƒกแƒแƒ“แƒแƒช แƒจแƒ”แƒ“แƒ”แƒ’แƒ”แƒ‘แƒ˜ แƒ’แƒแƒ›แƒแƒฉแƒœแƒ“แƒ”แƒ‘แƒ.

Grouped By

Select whether the input data has columns or rows layout.

แƒ’แƒแƒ›แƒแƒขแƒแƒœแƒ˜แƒก แƒ แƒ”แƒ’แƒ แƒ”แƒกแƒ˜แƒ˜แƒก แƒขแƒ˜แƒžแƒ”แƒ‘แƒ˜

Set the regression type. Three types are available:

แƒžแƒแƒ แƒแƒ›แƒ”แƒขแƒ แƒ”แƒ‘แƒ˜

แƒœแƒ“แƒแƒ‘แƒ˜แƒก แƒ“แƒแƒœแƒ”

A numeric value between 0 and 1 (exclusive), default is 0.95. Calc uses this percentage to compute the corresponding confidence intervals for each of the estimates (namely the slopes and intercept).

แƒœแƒแƒจแƒ—แƒ”แƒ‘แƒ˜แƒก แƒ’แƒแƒ›แƒแƒ—แƒ•แƒšแƒ

Select whether to opt in or out of computing the residuals, which may be beneficial in cases where you are interested only in the slopes and intercept estimates and their statistics. The residuals give information on how far the actual data points deviate from the predicted data points, based on the regression model.

แƒ—แƒแƒ•แƒ˜แƒกแƒฃแƒคแƒแƒšแƒ˜ แƒฌแƒ”แƒ•แƒ แƒ˜ แƒœแƒฃแƒšแƒ˜แƒก แƒขแƒแƒšแƒ˜แƒ

Calculates the regression model using zero as the intercept, thus forcing the model to pass through the origin.

Please support us!