Fourier Analysis

Produces the Fourier analysis of a data set by computing the Discrete Fourier Transform (DFT) of an input array of complex numbers using a couple of Fast Fourier Transform (FFT) algorithms.

αƒ‘αƒ αƒ«αƒαƒœαƒ”αƒ‘αƒαƒ–αƒ” αƒ¬αƒ•αƒ“αƒαƒ›αƒ˜αƒ‘αƒαƒ—αƒ•αƒ˜αƒ‘...

From the menu bar:

Choose Data - Statistics - Fourier Analysis

From the tabbed interface:

Choose Data - Statistics - Fourier Analysis.

On the Data menu of the Data tab, choose Statistics - Fourier Analysis.


note

For more information on Fourier analysis, refer to the corresponding Wikipedia article.


αƒ›αƒαƒœαƒαƒͺαƒ”αƒ›αƒ”αƒ‘αƒ˜

Input Range: The reference of the range of the data to analyze.

Results to: The reference of the top left cell of the range where the results will be displayed.

Input range has label: Mark when the first row or column of the input array is actually a label and not part of the data analysis.

Input Range is a 2 x N or N x 2 range representing an array of complex number to be transformed, where N is the length of the array. The array represents the real and imaginary parts of the data.

Grouped By

Select whether the input data has columns or rows layout.

Options:

Inverse: When checked, calculates the inverse Discrete Fourier Transform.

Polar: When checked, the results are in polar coordinates (magnitude, phase).

Minimum magnitude for polar form output (in dB): used only when output is in polar form. All frequency components with magnitude less than this value in decibels will be suppressed with a zero magnitude-phase entry. This is very useful when looking at the magnitude-phase spectrum of a signal because there is always some very tiny amount of rounding error when doing FFT algorithms and results in incorrect non-zero phase for non-existent frequencies. By providing a suitable value to this parameter, these non-existent frequency components can be suppressed.

Open file with example:

αƒ›αƒαƒ’αƒαƒšαƒ˜αƒ—αƒ”αƒ‘αƒ˜

The source data for this example is the same of the FOURIER function page.

Fourier Transform

Fourier Transform

Input data range : $B$6:$C$40

Input data range : $B$6:$C$40

Real

Imaginary

Magnitude

Phase

17.1775578743134

3.88635177703826E-15

17.1775578743134

2.26245884628906E-16

3.428868795359

2.37164790000189

4.16915518748944

0.605113892937279

-6.80271615433369

-15.1345439297576

16.5931120359682

-1.99322000923881

-1.605447356601

-5.08653060378972

5.33387802617444

-1.87652762269615

0.395847917447356

-2.41926785527625

2.45143886917874

-1.40861048708919

-1.49410383304833

-2.39148041275

2.81984482347817

-2.12922380028329

0.87223579298981

-1.14394086206797

1.43853952829993

-0.919353665468368

1.5332458505929

0.678159168870983

1.6765269746366

0.416434654153369

0.450563708411459

0.22911248792634

0.505470263676592

0.470425948779898

0.545106616940358

0.411028927740438

0.682704916689207

0.646077879418302

2.22685996425193

-2.43092236748302

3.29670879167654

-0.829181229907427

-1.61522859107175

-2.41682657284899

2.90689079338124

-2.15994697868441

1.30245078290168

1.45443785733126

1.95237484175544

0.840472341525344

1.57930628561185

-1.33862736591677

2.07029745895472

-0.70310180067089

-1.07572227365276

-0.921557968003809

1.41649126309482

-2.43322886402899

-0.055782417923803

-1.81336029451831

1.81421807837012

-1.60154853447151

-0.577666040004067

1.38887243891951

1.50421564456836

1.96495487990047

-0.826878282157686

-0.186591000796403

0.847669685126376

-2.91965280961949

-0.826878282157715

0.186591000796416

0.847669685126408

2.91965280961948

-0.577666040004051

-1.38887243891954

1.50421564456838

-1.96495487990045

-0.055782417923785

1.81336029451832

1.81421807837012

1.6015485344715

-1.07572227365276

0.921557968003802

1.41649126309482

2.433228864029

1.57930628561187

1.33862736591678

2.07029745895474

0.703101800670888

1.3024507829017

-1.45443785733125

1.95237484175543

-0.840472341525331

-1.61522859107176

2.416826572849

2.90689079338125

2.15994697868441

2.22685996425191

2.43092236748304

3.29670879167653

0.829181229907435

0.545106616940365

-0.411028927740441

0.682704916689214

-0.646077879418299

0.450563708411458

-0.229112487926344

0.505470263676594

-0.470425948779905

1.53324585059292

-0.678159168870965

1.6765269746366

-0.416434654153355

0.872235792989797

1.14394086206799

1.43853952829994

0.919353665468386

-1.49410383304834

2.39148041275001

2.81984482347818

2.12922380028329

0.395847917447327

2.41926785527626

2.45143886917875

1.4086104870892

-1.60544735660102

5.08653060378972

5.33387802617445

1.87652762269616

-6.80271615433379

15.1345439297575

16.5931120359682

1.99322000923882

3.42886879535907

-2.37164790000194

4.16915518748952

-0.605113892937279


Please support us!