სტატისტიკური ფუნქციები მეხუთე ნაწილი

YEAR

Calculates the skewness of a distribution using the population of a random variable.

tip

This function is available since LibreOffice 4.1.


სინტაქსი

SKEWP(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least three values.

შენიშვნის ხატულა

This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)


მაგალითები

SKEWP(2;3;1;6;8;5) returns 0.2828158928

SKEWP(A1:A6) returns 0.2828158928, when the range A1:A6 contains {2;3;1;6;8;5}

SKEWP(Number1; Number2) always returns zero, if Number1 and Number2 results in two numbers.

SKEWP(Number1) returns Err:502 (Invalid argument) if Number1 results in one number, because SKEWP cannot be calculated with one value.

T.INV.2T

Calculates the inverse of the two-tailed Student's T Distribution , which is a continuous probability distribution that is frequently used for testing hypotheses on small sample data sets.

tip

This function is available since LibreOffice 4.3.


Syntax

TINV(რიცხვი; თავისუფლების_ხარისხი)

Number is the probability associated with the two-tailed t-distribution.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Example

=T.INV.2T(0.25; 10) returns 1.221255395.

T.DIST.RT

Calculates the right-tailed Student's T Distribution, which is a continuous probability distribution that is frequently used for testing hypotheses on small sample data sets.

tip

This function is available since LibreOffice 4.3.


Syntax

CHIDIST (რიცხვი; თავისუფლების ხარისხი)

რიცხვი მნიშვნელობა, რომლისთვისაც t-განაწილება გამოითვლება.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Example

=T.DIST.RT(1; 10) returns 0.1704465662.

T.DIST.2T

Calculates the two-tailed Student's T Distribution, which is a continuous probability distribution that is frequently used for testing hypotheses on small sample data sets.

tip

This function is available since LibreOffice 4.3.


Syntax

CHIDIST (რიცხვი; თავისუფლების ხარისხი)

რიცხვი მნიშვნელობა, რომლისთვისაც t-განაწილება გამოითვლება.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Example

=T.DIST.2T(1; 10) returns 0.3408931323.

FORECAST

Extrapolates future values based on existing x and y values.

Syntax

FORECAST(მნიშვნელობა; მონაცემი_Y; მონაცემი_X)

Value is the x value, for which the y value on the linear regression is to be returned.

მონაცემი_Y არის ცნობილი y-ების მასივი ან დიაპაზონი.

მონაცემი_X არის ცნობილი x-ების მასივი ან დიაპაზონი.

Example

=FORECAST(50;A1:A50;B1;B50) returns the Y value expected for the X value of 50 if the X and Y values in both references are linked by a linear trend.

FORECAST.LINEAR

Extrapolates future values based on existing x and y values.

Syntax

FORECAST.LINEAR(Value; DataY; DataX)

Value is the x value, for which the y value on the linear regression is to be returned.

მონაცემი_Y არის ცნობილი y-ების მასივი ან დიაპაზონი.

მონაცემი_X არის ცნობილი x-ების მასივი ან დიაპაზონი.

Example

=FORECAST.LINEAR(50;A1:A50;B1;B50) returns the Y value expected for the X value of 50 if the X and Y values in both references are linked by a linear trend.

TTEST

Returns the probability associated with a Student's t-Test.

Syntax

TTEST(მონაცემი_1; მონაცემი_2; რეჟიმი; ტიპი)

მონაცემი_1 არის პირველი ჩანაწერითვის დამოკიდებული დიაპაზონი ან მასივი.

მონაცემი_2 არის მეორე ჩანაწერითვის დამოკიდებული დიაპაზონი ან მასივი.

Mode = 1 calculates the one-tailed test, Mode = 2 the two- tailed test.

Type is the kind of t-test to perform. Type 1 means paired. Type 2 means two samples, equal variance (homoscedastic). Type 3 means two samples, unequal variance (heteroscedastic).

Example

=TTEST(A1:A50;B1:B50;2;2)

TTEST

Returns the probability associated with a Student's t-Test.

tip

This function is available since LibreOffice 4.3.


Syntax

TTEST(მონაცემი_1; მონაცემი_2; რეჟიმი; ტიპი)

მონაცემი_1 არის პირველი ჩანაწერითვის დამოკიდებული დიაპაზონი ან მასივი.

მონაცემი_2 არის მეორე ჩანაწერითვის დამოკიდებული დიაპაზონი ან მასივი.

Mode = 1 calculates the one-tailed test, Mode = 2 the two- tailed test.

Type is the kind of t-test to perform. Type 1 means paired. Type 2 means two samples, equal variance (homoscedastic). Type 3 means two samples, unequal variance (heteroscedastic).

Example

=T.TEST(A1:A50;B1:B50;2;2)

PROB

Returns the probability that values in a range are between two limits. If there is no End value, this function calculates the probability based on the principle that the Data values are equal to the value of Start.

Syntax

PROB(Data; Probability; Start [; End])

მონაცემი ასახავს შერჩევაში მონაცემთა მასივს.

ალბათობა არის ალბათობასთან დაკავშირებული მასივი ან დიაპაზონი.

Start is the start value of the interval whose probabilities are to be summed.

End (optional) is the end value of the interval whose probabilities are to be summed. If this parameter is missing, the probability for the Start value is calculated.

Example

=PROB(A1:A50;B1:B50;50;60) returns the probability with which a value within the range of A1:A50 is also within the limits between 50 and 60. Every value within the range of A1:A50 has a probability within the range of B1:B50.

SLOPE

Returns the slope of the linear regression line. The slope is adapted to the data points set in the y and x values.

Syntax

SLOPE(მონაცემი_Y; მონაცემი_X)

მონაცემი_Y Y მონაცემის მასივი ან მატრიცა.

მონაცემი_X X მონაცემის მასივი ან მატრიცა.

Example

=SLOPE(A1:A50;B1:B50)

STEYX

Returns the standard error of the predicted y value for each x in the regression.

Syntax

STEYX(მონაცემი_Y; მონაცემი_X)

მონაცემი_Y Y მონაცემის მასივი ან მატრიცა.

მონაცემი_X X მონაცემის მასივი ან მატრიცა.

Example

=STEYX(A1:A50;B1:B50)

NORMSDIST

Returns the standard normal cumulative distribution function. The distribution has a mean of zero and a standard deviation of one.

ეს არის GAUSS(x)=NORMSDIST(x)-0.5

Syntax

NORMSDIST(რიცხვი)

რიცხვი არის ალბათობა რომლისთვისაც სტანდარტული ნორმალური გადახრა უნდა გამოითვალოს.

Example

=NORMSDIST(1) returns 0.84. The area below the standard normal distribution curve to the left of X value 1 is 84% of the total area.

NORMSDIST

Returns the standard normal cumulative distribution function. The distribution has a mean of zero and a standard deviation of one.

tip

This function is available since LibreOffice 4.3.


Syntax

NORM.S.DIST(Number; Cumulative)

რიცხვი არის ალბათობა რომლისთვისაც სტანდარტული ნორმალური გადახრა უნდა გამოითვალოს.

Cumulative 0 or FALSE calculates the probability density function. Any other value or TRUE calculates the cumulative distribution function.

Example

=NORM.S.DIST(1;0) returns 0.2419707245.

=NORM.S.DIST(1;1) returns 0.8413447461. The area below the standard normal distribution curve to the left of X value 1 is 84% of the total area.

RANK.AVG

Returns the statistical rank of a given value, within a supplied array of values. If there are duplicate values in the list, the average rank is returned.

note

The difference between RANK.AVG and RANK.EQ occurs when there are duplicates in the list of values. The RANK.EQ function returns the lower rank, whereas the RANK.AVG function returns the average rank.


tip

This function is available since LibreOffice 4.3.


Syntax

RANK.AVG(Value; Data [; Type])

მნიშვნელობა არის მნიშვნელობა, რომლის რანგიც უნდა დადგინდეს.

მონაცემი ასახავს შერჩევაში მონაცემთა მასივს.

ტიპი (არასავალდებულო) არის თანმიმდევრობა.

Type = 0 means descending from the last item of the array to the first (this is the default),

Type = 1 means ascending from the first item of the range to the last.

Example

=RANK.AVG(A10;A1:A50) returns the ranking of the value in A10 in value range A1:A50. If Value does not exist within the range an error message is displayed.

RANK.EQ

Returns the statistical rank of a given value, within a supplied array of values. If there are duplicate values in the list, these are given the same rank.

note

The difference between RANK.AVG and RANK.EQ occurs when there are duplicates in the list of values. The RANK.EQ function returns the lower rank, whereas the RANK.AVG function returns the average rank.


tip

This function is available since LibreOffice 4.3.


Syntax

RANK.EQ(Value; Data [; Type])

მნიშვნელობა არის მნიშვნელობა, რომლის რანგიც უნდა დადგინდეს.

მონაცემი ასახავს შერჩევაში მონაცემთა მასივს.

ტიპი (არასავალდებულო) არის თანმიმდევრობა.

Type = 0 means descending from the last item of the array to the first (this is the default),

Type = 1 means ascending from the first item of the range to the last.

Example

=RANK.EQ(A10;A1:A50) returns the ranking of the value in A10 in value range A1:A50. If Value does not exist within the range an error message is displayed.

TDIST

აბრუნებს t-განაწილებას.

Syntax

TDIST(რიცხვები; თავისუფლების_გრადუსები; რეჟიმი)

რიცხვი მნიშვნელობა, რომლისთვისაც t-განაწილება გამოითვლება.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Mode = 1 returns the one-tailed test, Mode = 2 returns the two-tailed test.

Example

=TDIST(12;5;1)

TDIST

აბრუნებს t-განაწილებას.

tip

This function is available since LibreOffice 4.3.


Syntax

TDIST(რიცხვები; თავისუფლების_გრადუსები; რეჟიმი)

რიცხვი მნიშვნელობა, რომლისთვისაც t-განაწილება გამოითვლება.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Cumulative = 0 or FALSE returns the probability density function, 1 or TRUE returns the cumulative distribution function.

Example

=T.DIST(1; 10; TRUE) returns 0.8295534338

TINV

აბრუნებს t-განაწილების ინვერსიას.

Syntax

TINV(რიცხვი; თავისუფლების_ხარისხი)

Number is the probability associated with the two-tailed t-distribution.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Example

=TINV(0.1;6) returns 1.94

TINV

აბრუნებს t-განაწილების ინვერსიას.

tip

This function is available since LibreOffice 4.3.


Syntax

TINV(რიცხვი; თავისუფლების_ხარისხი)

Number is the probability associated with the one-tailed t-distribution.

თავისუფლების_ხარისხი არის t-განაწილების თავისუფლების ხარისხი.

Example

=T.INV(0.1;6) returns -1.4397557473.

SKEW

აბრუნებს განაწილების მრუდს.

Syntax

SKEW(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least three values.

Example

=SKEW(A1:A50) calculates the value of skew for the data referenced.

WEIBULL

აბრუნებს ვეიბულის განაწილების მნიშვნელობას.

The Weibull distribution is a continuous probability distribution, with parameters Alpha > 0 (shape) and Beta > 0 (scale).

If C is 0, WEIBULL calculates the probability density function.

If C is 1, WEIBULL calculates the cumulative distribution function.

Syntax

WEIBULL(რიცხვი; ალფა; ბეტა; C)

რიცხვი არის რიცხვი, რომლისთვისაც ვეიბულის განაწილება გამოითვლება.

ალფა არის ვეიბულის განაწილების ალფა პარამეტრი.

ბეტა ბეტა პარამეტრი ვეიბულის განაწილებისთვის.

C indicates the type of function.

Example

=WEIBULL(2;1;1;1) returns 0.86.

See also the Wiki page.

WEIBULL.DIST

აბრუნებს ვეიბულის განაწილების მნიშვნელობას.

The Weibull distribution is a continuous probability distribution, with parameters Alpha > 0 (shape) and Beta > 0 (scale).

If C is 0, WEIBULL.DIST calculates the probability density function.

If C is 1, WEIBULL.DIST calculates the cumulative distribution function.

tip

This function is available since LibreOffice 4.2.


Syntax

WEIBULL(რიცხვი; ალფა; ბეტა; C)

რიცხვი არის რიცხვი, რომლისთვისაც ვეიბულის განაწილება გამოითვლება.

ალფა არის ვეიბულის განაწილების ალფა პარამეტრი.

ბეტა ბეტა პარამეტრი ვეიბულის განაწილებისთვის.

C indicates the type of function.

Example

=WEIBULL.DIST(2;1;1;1) returns 0.8646647168.

See also the Wiki page.

NORMSINV

აბრუნებს სტანდარტული ნორმალური კუმულაციური გადახრის შებრუნებას.

Syntax

NORMINV(რიცხვი)

რიცხვი არის ალბათობა რომლისთვისაც სტანდარტული ნორმალური გადახრა უნდა გამოითვალოს.

Example

=NORMSINV(0.908789) returns 1.3333.

NORMSINV

აბრუნებს სტანდარტული ნორმალური კუმულაციური გადახრის შებრუნებას.

tip

This function is available since LibreOffice 4.3.


Syntax

NORMINV(რიცხვი)

რიცხვი არის ალბათობა რომლისთვისაც სტანდარტული ნორმალური გადახრა უნდა გამოითვალოს.

Example

=NORM.S.INV(0.908789) returns 1.333334673.

RANK

აბრუნებს შერჩევაში რიცხვის რანგს.

Syntax

RANK(Value; Data [; Type])

მნიშვნელობა არის მნიშვნელობა, რომლის რანგიც უნდა დადგინდეს.

მონაცემი ასახავს შერჩევაში მონაცემთა მასივს.

ტიპი (არასავალდებულო) არის თანმიმდევრობა.

Type = 0 means descending from the last item of the array to the first (this is the default),

Type = 1 means ascending from the first item of the range to the last.

Example

=RANK(A10;A1:A50) returns the ranking of the value in A10 in value range A1:A50. If Value does not exist within the range an error message is displayed.

DEVSQ

აბრუნებს შერჩევის საშუალოს მოლოდინის კვადრატების ჯამს.

Syntax

DEVSQ(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Example

=DEVSQ(A1:A50)

VARP

გამოთვლის მთელი მოსახლეობის ვარიაციას.

Syntax

VARP(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Example

=VARP(A1:A50)

VARP

გამოთვლის მთელი მოსახლეობის ვარიაციას.

tip

This function is available since LibreOffice 4.2.


Syntax

VAR.P(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Example

=VAR.P(A1:A50)

VARPA

გამოთვლის მთელი მოსახლეობის ვარიაციას. ტექსტის მნიშვნელობაა 0.

Syntax

VARPA(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Example

=VARPA(A1:A50)

STDEVP

გამოთვლის მთელი მოსახლეობის სტანდარტულ გადახრას.

Syntax

STDEVP(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Example

=STDEVP(A1:A50) returns a standard deviation of the data referenced.

STDEVP

გამოთვლის მთელი მოსახლეობის სტანდარტულ გადახრას.

tip

This function is available since LibreOffice 4.2.


Syntax

STDEV.P(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Example

=STDEV.P(A1:A50) returns a standard deviation of the data referenced.

STDEVP

გამოთვლის მთელი მოსახლეობის სტანდარტულ გადახრას.

tip

This function is available since LibreOffice 4.2.


Syntax

STDEV.S(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least two values.

Example

=STDEV.S(A1:A50) returns a standard deviation of the data referenced.

STDEVPA

გამოთვლის მთელი მოსახლეობის სტანდარტულ გადახრას.

Syntax

STDEVPA(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Text has the value 0.

Example

=STDEVPA(A1:A50) returns the standard deviation of the data referenced.

STDEV

გამოთვლის მოსალოდნელის სტანდარტულ გადახრას.

Syntax

STDEV(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least two values.

Example

=STDEV(A1:A50) returns the estimated standard deviation based on the data referenced.

STDEVA

გამოთვლის მოსალოდნელის სტანდარტულ გადახრას.

Syntax

STDEVA(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least two values. Text has the value 0.

Example

=STDEVA(A1:A50) returns the estimated standard deviation based on the data referenced.

VAR

მოელის განაწილებაზე დაფუძნებულ ვარიაციას.

Syntax

VAR(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least two values.

Example

=VAR(A1:A50)

VARP

მოელის განაწილებაზე დაფუძნებულ ვარიაციას.

tip

This function is available since LibreOffice 4.2.


Syntax

VAR.S(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least two values.

Example

=VAR.S(A1:A50)

VARA

მოელის განაწილებაზე დაფუძნებულ ვარიაციას. ტექსტის მნიშვნელობაა 0.

Syntax

VARA(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least two values.

Example

=VARA(A1:A50)

PERMUT

ობიექტების მოცემული რაოდენობისთვის აბრუნებს გადაადგილებების რაოდენობას.

Syntax

PERMUT(თვლა_1; თვლა_2)

თვლა_1 ობიექტების სრული რაოდენობა.

თვლა_2 ყოველ გადაადგილებაში ობიექტების რაოდენობა.

Example

=PERMUT(6;3) returns 120. There are 120 different possibilities, to pick a sequence of 3 playing cards out of 6 playing cards.

PERMUTATIONA

ობიექტების მოცემული რაოდენობისთვის აბრუნებს გადაადგილებების რაოდენობას.

Syntax

PERMUTATIONA(თვლა_1; თვლა_2)

თვლა_1 ობიექტების სრული რაოდენობა.

თვლა_2 ყოველ გადაადგილებაში ობიექტების რაოდენობა.

Example

How often can 2 objects be selected from a total of 11 objects?

=PERMUTATIONA(11;2) returns 121.

=PERMUTATIONA(6;3) returns 216. There are 216 different possibilities to put a sequence of 3 playing cards together out of six playing cards if every card is returned before the next one is drawn.

STANDARDIZE

შემთხვევით ცვლადს ნორმალურ მნიშვნელობად გარდაქმნის.

Syntax

STANDARDIZE(რიცხვი; მნიშვნელობა; STDEV)

რიცხვი არის გარდასაქმნელი მნიშვნელობა.

საშუალო განაწილების საშუალო არითმეტიკული.

STDEV არის ნორმალური განაწილების სტანდარტული გადახრა.

Example

=STANDARDIZE(11;10;1) returns 1. The value 11 in a normal distribution with a mean of 10 and a standard deviation of 1 is as much above the mean of 10, as the value 1 is above the mean of the standard normal distribution.

Please support us!