# Statistical Functions Part Three

\<bookmark_value\>CONFIDENCE function\</bookmark_value\>

## CONFIDENCE

Returns the (1-alpha) confidence interval for a Student's t distribution. This function is available since LibreOffice 4.2.

#### Syntax

CONFIDENCE(Alpha; STDEV; Size)

\<emph\>Alpha\</emph\> is the level of the confidence interval.

\<emph\>STDEV\</emph\> is the standard deviation for the total population.

\<emph\>Size\</emph\> is the size of the total population.

#### Example

=CONFIDENCE(0.05; 1.5; 100) gives 0.29.

\<bookmark_value\>CONFIDENCE function\</bookmark_value\>

## CONFIDENCE.NORM

Returns the (1-alpha) confidence interval for a normal distribution. This function is available since LibreOffice 4.2.

#### Syntax

CONFIDENCE(Alpha; STDEV; Size)

\<emph\>Alpha\</emph\> is the level of the confidence interval.

\<emph\>STDEV\</emph\> is the standard deviation for the total population.

\<emph\>Size\</emph\> is the size of the total population.

#### Example

=CONFIDENCE(0.05; 1.5; 100) gives 0.29.

\<bookmark_value\>CONFIDENCE function\</bookmark_value\>

## CONFIDENCE

Returns the (1-alpha) confidence interval for a normal distribution.

#### Syntax

CONFIDENCE(Alpha; STDEV; Size)

\<emph\>Alpha\</emph\> is the level of the confidence interval.

\<emph\>STDEV\</emph\> is the standard deviation for the total population.

\<emph\>Size\</emph\> is the size of the total population.

#### Example

=CONFIDENCE(0.05; 1.5; 100) gives 0.29.

\<bookmark_value\>LARGE function\</bookmark_value\>

## LARGE

Returns the Rank_c-th largest value in a data set. This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)

#### Syntax

LARGE(Data; Rank_c)

\<emph\>Data\</emph\> is the cell range of data.

RankC is the ranking of the value. If RankC is an array, the function becomes an array function.

#### Example

=LARGE(A1:C50;2) gives the second largest value in A1:C50.

=LARGE(A1:C50;B1:B5) entered as an array function gives an array of the c-th largest value in A1:C50 with ranks defined in B1:B5.

\<bookmark_value\>SMALL function\</bookmark_value\>

## SMALL

Returns the Rank_c-th smallest value in a data set. This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)

#### Syntax

SMALL(Data; Rank_c)

\<emph\>Data\</emph\> is the cell range of data.

RankC is the rank of the value. If RankC is an array, the function becomes an array function.

#### Example

=SMALL(A1:C50;2) gives the second smallest value in A1:C50.

=SMALL(A1:C50;B1:B5) entered as an array function gives an array of the c-th smallest value in A1:C50 with ranks defined in B1:B5.

\<bookmark_value\>CORREL function\</bookmark_value\>\<bookmark_value\>coefficient of correlation\</bookmark_value\>

## CORREL

Returns the correlation coefficient between two data sets.

#### Syntax

CORREL(Data_1; Data_2)

\<emph\>Data_1\</emph\> is the first data set.

\<emph\>Data_2\</emph\> is the second data set.

#### Example

=CORREL(A1:A50; B1:B50) calculates the correlation coefficient as a measure of the linear correlation of the two data sets.

\<bookmark_value\>COVAR function\</bookmark_value\>

## COVARIANCE.S

Returns the covariance of the product of paired deviations, for a sample of the population. This function is available since LibreOffice 4.2.

#### Syntax

COVARIANCE.S(Data1; Data2)

\<emph\>Data_1\</emph\> is the first data set.

\<emph\>Data_2\</emph\> is the second data set.

#### Example

=COVAR(A1:A30; B1:B30)

\<bookmark_value\>COVAR function\</bookmark_value\>

## COVARIANCE.P

Returns the covariance of the product of paired deviations, for the entire population. This function is available since LibreOffice 4.2.

#### Syntax

COVARIANCE.P(Data1; Data2)

\<emph\>Data_1\</emph\> is the first data set.

\<emph\>Data_2\</emph\> is the second data set.

#### Example

=COVAR(A1:A30; B1:B30)

\<bookmark_value\>COVAR function\</bookmark_value\>

## COVAR

Returns the covariance of the product of paired deviations.

#### Syntax

COVAR(Data_1; Data_2)

\<emph\>Data_1\</emph\> is the first data set.

\<emph\>Data_2\</emph\> is the second data set.

#### Example

=COVAR(A1:A30; B1:B30)

\<bookmark_value\>LOGINV function\</bookmark_value\>\<bookmark_value\>inverse of lognormal distribution\</bookmark_value\>

## LOGINV

Returns the inverse of the lognormal distribution.

#### Syntax

LOGINV(Number [; Mean [; StDev]])

\<emph\>Number\</emph\> is the probability value for which the inverse standard logarithmic distribution is to be calculated.

\<emph\>Mean\</emph\> is the arithmetic mean of the standard logarithmic distribution.

\<emph\>STDEV\</emph\> is the standard deviation of the standard logarithmic distribution.

#### Example

=LOGINV(0.05; 0; 1) returns 0.19.

\<bookmark_value\>LOGINV function\</bookmark_value\>\<bookmark_value\>inverse of lognormal distribution\</bookmark_value\>

## LOGNORMDIST

Returns the inverse of the lognormal distribution.

This function is identical to LOGINV and was introduced for interoperability with other office suites. This function is available since LibreOffice 4.3.

#### Syntax

NORMINV(Number; Mean; STDEV)

\<emph\>Number\</emph\> is the probability value for which the inverse standard logarithmic distribution is to be calculated.

\<emph\>Mean\</emph\> is the arithmetic mean of the standard logarithmic distribution.

\<emph\>STDEV\</emph\> is the standard deviation of the standard logarithmic distribution.

#### Example

=LOGINV(0.05; 0; 1) returns 0.19.

\<bookmark_value\>KURT function\</bookmark_value\>

## KURT

Returns the kurtosis of a data set (at least 4 values required).

#### Syntax

KURT(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

The parameters should specify at least four values.

#### Example

=KURT(A1;A2;A3;A4;A5;A6)

\<bookmark_value\>CRITBINOM function\</bookmark_value\>

## CRITBINOM

Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

#### Syntax

CRITBINOM(Trials; SP; Alpha)

\<emph\>Trials\</emph\> is the total number of trials.

\<emph\>SP\</emph\> is the probability of success for one trial.

\<emph\>Alpha\</emph\> is the threshold probability to be reached or exceeded.

#### Example

=CRITBINOM(100; 0.5; 0.1) yields 44.

\<bookmark_value\>NEGBINOMDIST function\</bookmark_value\>\<bookmark_value\>negative binomial distribution\</bookmark_value\>

## LOGNORMDIST

Returns the values of a lognormal distribution.

#### Syntax

LOGNORMDIST(Number [; Mean [; StDev [; Cumulative]]])

\<emph\>Number\</emph\> is the probability value for which the standard logarithmic distribution is to be calculated.

\<emph\>Mean\</emph\> is the mean value of the standard logarithmic distribution.

\<emph\>STDEV\</emph\> is the standard deviation of the standard logarithmic distribution.

\<emph\>C\</emph\> = 0 calculates the density function \<emph\>C\</emph\> = 1 the distribution.

#### Example

=LOGNORMDIST(0.1; 0; 1) returns 0.01.

\<bookmark_value\>NEGBINOMDIST function\</bookmark_value\>\<bookmark_value\>negative binomial distribution\</bookmark_value\>

## LOGNORMDIST

Returns the values of a lognormal distribution. This function is available since LibreOffice 4.3.

#### Syntax

LOGNORMDIST(Number; Mean; STDEV)

\<emph\>Number\</emph\> is the probability value for which the standard logarithmic distribution is to be calculated.

\<emph\>Mean\</emph\> is the mean value of the standard logarithmic distribution.

\<emph\>STDEV\</emph\> is the standard deviation of the standard logarithmic distribution.

\<emph\>C\</emph\> = 0 calculates the density function \<emph\>C\</emph\> = 1 the distribution.

#### Example

=LOGNORMDIST(0.1; 0; 1) returns 0.01.

Please support us!