Funciones estadísticas, primera parte

From LibreOffice Help
Jump to: navigation, search

COEFICIENTE.R2

Calcula el cuadrado del coeficiente de correlación de Pearson según los valores especificados. El coeficiente R2, también conocido como coeficiente de determinación, es una medida para obtener un buen ajuste, que se puede utilizar para producir un análisis de regresión.

Sintaxis

COEFICIENTE.R2(DatosY; DatosX)

DatosY es una matriz o área de puntos de datos.

DatosX es una matriz o intervalo de puntos de datos.

Ejemplo

=COEFICIENTE.R2(A1:A20;B1:B20) calcula el coeficiente de determinación para los conjuntos de datos en las columnas A y B.

NTERSECCIÓN.EJE

Calcula el punto de intersección de una línea con los valores y utilizando los valores x e y conocidos.

Sintaxis

INTERSECCION.EJE(DatosY; DatosX)

DatosY es el conjunto dependiente de observaciones o datos.

DatosX es el conjunto independiente de observaciones o datos.

Se deben utilizar nombres, matrices o referencias que contengan números. También se pueden escribir números directamente.

Ejemplo

Para calcular el eje de intersección se utilizan como valor Y las celdas D3:D9 y como valor X, las celdas C3:C9 de la hoja de ejemplo. La entrada queda como sigue:

=INTERSECCION.EJE(D3:D9;C3:C9) = 2,15.

DISTR.EXP.N

Devuelve la distribución exponencial.

Sintaxis

DISTR.EXP.N(Número; Lambda; C)

Número es el valor de la función.

Lambda es el valor del parámetro.

C es un valor lógico que determina la forma de la función. C = 0 calcula la función de densidad y C = 1 calcula la distribución.

Ejemplo

=DISTR.EXP.N(3;0,5;1) devuelve 0,7768698399.

DISTR.EXP

Devuelve la distribución exponencial.

Sintaxis

DISTR.EXP(Número; Lambda; C)

Número es el valor de la función.

Lambda es el valor del parámetro.

C es un valor lógico que determina la forma de la función. C = 0 calcula la función de densidad y C = 1 calcula la distribución.

Ejemplo

=DISTR.EXP(3;0,5;1) devuelve 0,78.

CONTAR.SI.CONJUNTO

Devuelve el número de filas o columnas que cumplen el criterio en múltiples rangos

CONTAR.SI

Devuelve la cantidad de celdas en un intervalo que cumplen determinados criterios.

La búsqueda admite expresiones regulares. Puede escribir «todo.*», por ejemplo, para buscar la primera aparición de «todo» seguido por cualquier combinación de caracteres. Si quiere buscar un texto que sea a su vez una expresión regular, cada carácter debe ir precedido por una barra invertida, \. Puede activar y desactivar la evaluación automática de expresiones regulares en Herramientas ▸ Opciones ▸ LibreOffice Calc ▸ Calcular.

Sintaxis

CONTAR.SI(Intervalo; Criterios)

Intervalo es el área en la que se aplicarán los criterios.

Criterios indica los criterios en forma de número, expresión o cadena de caracteres. Dichos criterios determinan las celdas que se contarán. Si las expresiones regulares están activadas en las opciones de cálculo, además podrá introducir un texto de búsqueda en forma de expresión regular, p. ej., «b.*» para encontrar todas las celdas que comiencen por la letra be. Si asimismo se han activado los caracteres comodín podrá escribir algo como «b*» para lograr el mismo propósito. También es posible indicar la dirección de una celda que contiene el criterio de búsqueda. Si busca un texto literal, entrecomíllelo.

Ejemplo

A1:A10 es un intervalo de celdas que contiene los números 2000 a 2009. La celda B1 contiene el número 2006. En la celda B2, escriba la fórmula:

=CONTAR.SI(A1:A10;2006) da como resultado 1.

=CONTAR.SI(A1:A10;B1) da como resultado 1.

=CONTAR.SI(A1:A10;">=2006") da como resultado 4.

=CONTAR.SI(A1:A10;"<"&B1)- cuando B1 contiene 2006, devuelve 6

=CONTAR.SI(A1:A10;C2) donde la celda C2 contiene el texto >2006 cuenta el número de celdas en el área A1:A10 que son >2006

Para contar únicamente los números negativos: =CONTAR.SI(A1:A10;"<0")

CONTAR.BLANCO

Devuelve la cantidad de celdas vacías.

Sintaxis

CONTAR.BLANCO(intervalo)

Devuelve la cantidad de celdas vacías en el intervalo de celdas Intervalo.

Ejemplo

=CONTAR.BLANCO(A1:B2) devuelve 4 si las celdas A1, A2, B1 y B2 están vacías.

CONTARA

Cuenta los valores que hay en la lista de argumentos. Las entradas de texto también se cuentan, incluso si contienen una cadena vacía de longitud 0. Si un argumento es una matriz o referencia, se hace caso omiso de las celdas vacías que pudieran contener.

Sintaxis

CONTAR(Valor1; Valor2; ... Valor30)

Valor 1; Valor 2, ... son argumentos del 1 al 30 que representan los valores que se van a contar.

Ejemplo

Las entradas 2, 4, 6 y ocho en el valor de los campos 1-4 han de ser contados.

=CONTARA(2;4;6;"ocho") = 4. La cantidad de valores es por tanto 4.

CONTAR

Cuenta los números que hay en la lista de argumentos. No se toman en consideración las entradas de texto.

Sintaxis

CONTAR(Valor1; Valor2; ... Valor30)

Valor 1; Valor 2... son valores o áreas del 1 al 30 que representan los valores que se van a contar.

Ejemplo

Las entradas 2, 4, 6 y ocho en el valor de los campos 1-4 han de ser contados.

=CONTAR(2;4;6;"ocho") = 3. La cantidad de números es por tanto 3.

PRUEBA.CHI

Devuelve la probabilidad de una desviación de una distribución aleatoria de dos series de prueba basándose en las pruebas de chi cuadrado para la independencia. PRUEBA.CHI devuelve la distribución del cuadrado de chi de los datos.

El intervalo de probabilidad calculado mediante PRUEBA.CHI también se puede determinar mediante DISTR.CHI; en este caso en lugar de una serie de datos, el chi cuadrado de la muestra se debe presentar como parámetro.

Sintaxis

PRUEBA.CHI(DatosB; DatosE)

DatosB es la matriz de las observaciones.

DatosE es el intervalo de valores esperados.

Ejemplo

B (observado) E (previsto)
1 195 170
2 151 170
3 148 170
4 189 170
5 183 170
6 154 170

=PRUEBA.CHI(A1:A6;B1:B6) es igual a 0,02. Es la probabilidad con la que se cumple la distribución teórica del cuadrado de chi.

INV.CUAD.CHI

Devuelve el valor inverso de DISTR.CUAD.CHI.

Sintaxis

Probabilidad es el valor del intervalo de probabilidad para el cual se debe calcular la distribución de cuadrado de chi inversa.

Grados de libertad son los grados de libertad para la función cuadrado de chi.

INV.CHICUAD.CD

Devuelve la inversa de la probabilidad de una cola de la distribución chi cuadrado.

Sintaxis

INV.CHICUAD.CD(Número; GradosDeLibertad)

Número es el valor de la probabilidad de error.

GradosdeLibertad son los grados de libertad del experimento.

Ejemplo

Se tira un dado 1020 veces. Los números de las caras del 1 al 6 aparecen 195, 151, 148, 189, 183 y 154 veces (valores observados). Se debe verificar la hipótesis de si el dado es real.

La distribución del cuadrado de chi de la muestra se calcula con la fórmula anterior. Como el valor previsto para cada uno de los números de las caras en n dados n veces es 1/6, entonces 1020/6 = 170, la fórmula da un valor de cuadrado de chi de 13,27.

Si el cuadrado de chi (observado) es mayor o igual al cuadrado PRUEBA.CHI.INV (teórico), entonces se descarta la hipótesis, pues la desviación entre teoría y práctica es demasiado grande. Si el cuadrado chi observado es inferior a PRUEBA.CHI.INV, entonces la hipótesis cumple el intervalo de probabilidad de error dado.

=INV.CHICUAD.CD(0,05;5) devuelve 11,0704976935.

=INV.CHICUAD.CD(0,02;5) devuelve 13,388222599.

Con un intervalo de probabilidad de error del 5% el dado no es de verdad; si el intervalo de error es del 2% no hay razón para cuestionar su veracidad.

INV.CHICUAD

Devuelve el inverso de la probabilidad de lateral izquierdo de la distribución ji cuadrado.

Sintaxis

INV.CHICUAD(Probabilidad; GradosDeLibertad)

Probabilidad es el valor de probabilidad para el cual se calculará la inversa de la distribución ji cuadrada.

Grados de libertad es la cantidad de grados de libertad de la función ji cuadrado.

Ejemplo

=INV.CHICUAD(0,5;1) devuelve 0,4549364231.

DISTR.CHICUAD.CD

Calcula el valor de probabilidad para el chi cuadrado en el que se confirma una hipótesis. DISTR.CHICUAD.CD compara el valor chi cuadrado de una muestra aleatoria, que se calcula a partir de la suma de (valor observado-valor previsto)^2/valor previsto para todos los valores con la distribución chi cuadrado teórica y determina así las probabilidad de error de la hipótesis que se está comprobando.

La probabilidad calculada mediante DISTR.CHICUAD.CD también se puede calcular mediante PRUEBA.CHI

Sintaxis

DISTR.CHICUAD.CD(Número; GradosDeLibertad)

Número es el valor de cuadrado de chi de la muestra aleatoria utilizada para determinar la probabilidad de error.

GradosdeLibertad son los grados de libertad del experimento.

Ejemplo

=DISTR.CHICUAD.CD(13,27; 5) es igual a 0,0209757694.

Si el valor del cuadrado de chi de la muestra asciende a 13,27 y el experimento tiene 5 grados libertad, entonces la hipótesis se cumple con una probabilidad de error del 2%.

DISTR.CHICUAD

Devuelve el valor de la función de densidad de probabilidad o la función de distribución acumulativa para la distribución del cuadrado de chi.

Sintaxis

DISTR.CHICUAD(Número; GradosdeLibertad; Acumulativa)

Número es el valor de cuadrado de chi de la muestra aleatoria utilizada para determinar la probabilidad de error.

GradosdeLibertad son los grados de libertad del experimento.

Acumulativa puede ser 0 o Falso para calcular la función de densidad de probabilidad. Puede ser cualquier otro valor o Verdadero para calcular la función de distribución acumulativa.

Ejemplo

DISTR.CHICUAD(3;2;0) igual a 0,1115650801, la función de densidad de probabilidad con 2 grados de libertad, en x=3.

DISTR.CHICUAD(3;2;1) igual a 0,7768698399, la distribución de chi cuadrado con 2 grados de libertad, en el valor x=3

DISTR.CUAD.CHI

Devuelve el valor de la función de densidad de probabilidad o la función de distribución acumulativa para la distribución del cuadrado de chi.

Sintaxis

DISTR.CUAD.CHI(Número; Grados de libertad; Acumulativa)

Número es el número para el que debe calcularse la función.

Grados de libertad son los grados de libertad para la función cuadrado de chi.

Acumulativa (opcional): 0 o Falso calcula la función de densidad de probabilidad. Otros valores o Verdadero u omitido calcula la función de distribución acumulativa.

PRUEBA.CHI.INV

Devuelve la inversa de la probabilidad unilateral de la distribución chi cuadrado.

Sintaxis

PRUEBA.CHI.INV(Número; GradosdeLibertad)

Número es el valor de la probabilidad de error.

GradosdeLibertad son los grados de libertad del experimento.

Ejemplo

Se tira un dado 1020 veces. Los números de las caras del 1 al 6 aparecen 195, 151, 148, 189, 183 y 154 veces (valores observados). Se debe verificar la hipótesis de si la cara no es fija.

La distribución del cuadrado de chi de la muestra se calcula con la fórmula anterior. Como el valor previsto para cada uno de los números de las caras en n dados n veces es 1/6, entonces 1020/6 = 170, la fórmula da un valor de cuadrado de chi de 13,27.

Si el cuadrado de chi (observado) es mayor o igual al cuadrado PRUEBA.CHI.INV (teórico), entonces se descarta la hipótesis, pues la desviación entre teoría y práctica es demasiado grande. Si el cuadrado chi observado es inferior a PRUEBA.CHI.INV, entonces la hipótesis cumple el intervalo de probabilidad de error dado.

=PRUEBA.CHI.INV(0,05;5) devuelve 11,07.

=PRUEBA.CHI.INV(0,02;5) devuelve 13,39.

Si la probabilidad de error es el 5% el dado no es de verdad; si la probabilifad de error es del 2% no hay razón para cuestionar su veracidad.

PRUEBA.CHICUAD

Devuelve la probabilidad de una desviación de una distribución aleatoria de dos series de prueba basándose en las pruebas del cuadrado de chi para la independencia. PRUEBA.CHICUAD devuelve la distribución de chi cuadrado de los datos.

El intervalo de probabilidad calculado mediante PRUEBA.CHI también se puede determinar mediante DISTR.CHICUAD; en este caso el cuadrado de chi de la muestra se debe presentar como parámetro en lugar de una serie de datos.

Sintaxis

PRUEBA.CHICUAD(DatoB; DatoE)

DatosB es la matriz de las observaciones.

DatosE es el intervalo de valores esperados.

Ejemplo

B (observado) E (previsto)
1 195 170
2 151 170
3 148 170
4 189 170
5 183 170
6 154 170

=PRUEBA.CHICUAD(A1:A6;B1:B6) es igual a 0,0209708029. Es la probabilidad con la que se cumple la distribución teórica del cuadrado de chi.

DISTR.CHI

Calcula el valor de probabilidad para el cuadrado de chi indicado para la confirmación de una hipótesis. DISTR.CHI compara el valor del cuadrado de chi de una muestra aleatoria, que se calcula a partir de la suma de (valor observado-valor previsto)^2/valor previsto en todos los valores con la distribución teórica del cuadrado de chi; origina el intervalo de probabilidad de error de la hipótesis que se debe demostrar.

El intervalo de probabilidad calculado mediante DISTR.CHI también se puede determinar mediante PRUEBA.CHI; en este caso, en lugar del cuadrado de chi de la muestra, los datos observados y previstos se deben suministrar como parámetros.

Sintaxis

DISTR.CHI(Número; GradosdeLibertad)

Número es el valor del cuadrado de chi de la muestra aleatoria utilizada para determinar la probabilidad de error.

GradosdeLibertad son los grados de libertad del experimento.

Ejemplo

=DISTR.CHI(13,27; 5) es igual a 0,02.

Si el valor del cuadrado de chi de la muestra asciende a 13,27 y el experimento tiene 5 grados de libertad, entonces la hipótesis se cumple con un intervalo de probabilidad de error del 2%.

INV.BINOM

Devuelve el valor más pequeño para el cual la distribución binomial acumulada es mayor o igual que un valor de criterio.

Sintaxis

INV.BINOM(Ensayos; Probabilidad; Alfa)

Ensayos es la cantidad de intentos.

Probabilidad es la probabilidad de éxito de cada intento.

Alfa es la probabilidad límite que se obtiene o supera.

Ejemplo

=INV.BINOM(8;0,6;0,9) devuelve 7, el número más pequeño cuya distribución binomial acumulada es mayor o igual que el valor del criterio indicado.

DISTR.BINOM.N

Devuelve la probabilidad de distribución binomial de un término individual.

Sintaxis

DISTR.BINOM.N(X; Ensayos; prob_éxito; C)

X es el número de éxitos en un conjunto de pruebas.

Ensayos es el número de intentos independientes.

prob_éxito es la probabilidad de éxito de cada intento.

C = 0 calcula la probabilidad de un único suceso y C = 1 calcula la probabilidad acumulada.

Ejemplo

º=DISTR.BINOM.N(A1;12;0,5;0) muestra (si se especifican los valores 0 a 12 en A1) la probabilidad que resulta de tirar 12 veces una moneda y que salga Cara exactamente el número de veces especificado en A1.

=DISTR.BINOM.N(A1;12;0,5;1) muestra las probabilidades acumuladas para la misma serie. Por ejemplo, si A1 = 4, la probabilidad acumulada de la serie es 0, 1, 2, 3 o 4 veces Cara (lógica OR no exclusiva).

DISTR.BINOM

Devuelve la probabilidad de distribución binomial de un término individual.

Sintaxis

DISTR.BINOM(X; Ensayos; prob_éxito; C)

X es el número de éxitos en un conjunto de pruebas.

Ensayos es el número de intentos independientes.

prob_éxito es la probabilidad de éxito de cada intento.

C = 0 calcula la probabilidad de un único suceso y C = 1 calcula la probabilidad acumulada.

Ejemplo

=DISTR.BINOM(A1;12;0,5;0) muestra (si se especifican los valores 0 a 12 en A1) la probabilidad que resulta de tirar 12 veces una moneda y que salga Cara exactamente el número de veces especificado en A1.

=DISTR.BINOM(A1;12;0,5;1) muestra las probabilidades acumuladas para la misma serie. Por ejemplo, si A1 = 4, la probabilidad acumulada de la serie es 0, 1, 2, 3 o 4 veces Cara (lógica OR no exclusiva).

DISTR.BETA.INV

Devuelve el inverso de la función de densidad de probabilidad beta acumulada.

Sintaxis

DISTR.BETA.INV(Número; Alpha; Beta; Inicio; Fin)

Número es el valor entre Inicio y Fin en el que evaluar la función.

Alfa es un parámetro para la distribución.

Beta es un parámetro para la distribución.

Inicio (opcional) es el límite inferior de Número.

Fin (opcional) es el límite superior de Número.

En las funciones de LibreOffice Calc, los parámetros marcados como "opcionales" se pueden omitir únicamente si no les sigue ningún parámetro. Por ejemplo, en una función que tiene cuatro parámetros cuyos dos últimos están marcados como "opcionales", se puede omitir el parámetro 4 o los parámetros 3 y 4; sin embargo, no se puede omitir solamente el parámetro 3.

Ejemplo

=DISTR.BETA.INV(0,5;5;10) devuelve el valor 0,33.

INV.BETA.N

Devuelve el inverso de la función de densidad de probabilidad beta acumulada.

Sintaxis

INV.BETA.N(Número; Alfa; Beta; Inicio; Fin)

Número es el valor entre Inicio y Fin en el que evaluar la función.

Alfa es un parámetro para la distribución.

Beta es un parámetro para la distribución.

Inicio (opcional) es el límite inferior de Número.

Fin (opcional) es el límite superior de Número.

En las funciones de LibreOffice Calc, los parámetros marcados como "opcionales" se pueden omitir únicamente si no les sigue ningún parámetro. Por ejemplo, en una función que tiene cuatro parámetros cuyos dos últimos están marcados como "opcionales", se puede omitir el parámetro 4 o los parámetros 3 y 4; sin embargo, no se puede omitir solamente el parámetro 3.

Ejemplo

=INV.BETA.N(0,5;5;10) devuelve el valor 0,3257511553.

DISTR.BETA.N

Devuelve la función beta.

Sintaxis

DISTR.BETA.N(Número; Alfa; Beta; Acumulada; Inicio; Fin)

Número (obligatorio) es el valor entre Inicio y Fin en el que se evaluará la función.

Alfa (obligatorio) es un parámetro de la distribución.

Beta (obligatorio) es un parámetro de la distribución.

Acumulativa (requerida) puede ser 0 o Falso para calcular la función de densidad de probabilidad. Puede ser cualquier otro valor o Verdadero para calcular la función de distribución acumulativa.

Inicio (opcional) es el límite inferior de Número.

Fin (opcional) es el límite superior de Número.

En las funciones de LibreOffice Calc, los parámetros marcados como "opcionales" se pueden omitir únicamente si no les sigue ningún parámetro. Por ejemplo, en una función que tiene cuatro parámetros cuyos dos últimos están marcados como "opcionales", se puede omitir el parámetro 4 o los parámetros 3 y 4; sin embargo, no se puede omitir solamente el parámetro 3.

Ejemplos

=DISTR.BETA.N(2;8;10;1;1;3) devuelve el valor 0,6854706

=DISTR.BETA.N(2;8;10;0;1;3) devuelve el valor 1,4837646

DISTR.BETA

Devuelve la función beta.

Sintaxis

DISTR.BETA(Número; Alfa; Beta; Inicio; Fin;Acumulativa)

Número es el valor entre Inicio y Fin en el que evaluar la función.

Alfa es un parámetro para la distribución.

Beta es un parámetro para la distribución.

Inicio (opcional) es el límite inferior de Número.

Fin (opcional) es el límite superior de Número.

Acumulativa (opcional) puede ser 0 o Falso para calcular la función de densidad de probabilidad. Puede ser cualquier otro valor o Verdadero u omitirse para calcular la función de distribución acumulativa.

En las funciones de LibreOffice Calc, los parámetros marcados como "opcionales" se pueden omitir únicamente si no les sigue ningún parámetro. Por ejemplo, en una función que tiene cuatro parámetros cuyos dos últimos están marcados como "opcionales", se puede omitir el parámetro 4 o los parámetros 3 y 4; sin embargo, no se puede omitir solamente el parámetro 3.

Ejemplo

=DISTR.BETA(0,75;3;4) devuelve el valor 0,96.

B

Devuelve la probabilidad de una muestra con distribución binomial.

Sintaxis

B(Ensayos; prob_éxito; T1; T2)

Ensayos es el número de intentos independientes.

prob_éxito es la probabilidad de éxito de cada intento.

T1 define el límite inferior para el número de intentos.

T2 (opcional) define el límite superior para el número de intentos.

Ejemplo

¿Cuál debe ser la probabilidad si al tirar un dado 10 veces sale dos veces el seis? La probabilidad para un seis (o para cualquier otro número) es 1/6, luego el resultado es la siguiente fórmula:

=B(10;1/6;2) devuelve una probabilidad del 29%.


Related Topics

Functions by Category